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Anomalous crystal growth of a binary chain
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Crystal growth in a two-component chain is studied by Monte Carlo simulation.

The mean

displacement (n(t)) of the solid-liquid interface is found proportional to the time ¢ in a one-phase
region, and to t¥* in a two-phase coexistence region with an exponent v; being smaller than 1,
and decreasing on leaving the phase boundary. The variance o(t) deviates from the linearity in
time at a lower concentration in the one-phase region. This dynamical transition is related to the
change of the probability distribution P(n,t). In the one-phase region the peak of P shifts steadily,
whereas in the two-phase region P is scaled only by the width. Even though the model has a finite
backward jump probability, the obtained behaviors of (n(t)), o(t), and P(n,t) agree with those of

the one-dimensional random directed walk.

PACS number(s): 61.50.Cj, 66.30.Dn, 05.40.+j, 05.60.4+w

I. INTRODUCTION

The growth of a crystal with the control of an atomic
level has been one of the major topics of study recently.
Understanding of the growth kinetics is also deepened by
the development of atomic scale observation techniques
such as scanning tunneling microscopy and various elec-
tron microscopies. For an alloy crystal, the growth is af-
fected by various factors such as supersaturation, thermal
and chemical diffusion, chemical segregation, and inter-
face morphology. At low temperatures when a crystal in-
terface is atomically flat, the crystal growth is controlled
solely by interface kinetics.

In an extreme limit, growth may proceed as a one-
dimensional motion of a kink site along the step. Temkin
has previously introduced a simple one-dimensional
model to describe a binary alloy growth [1-3]. A site
on a chain is occupied by an A or B atom, which can
be in a solid or in a liquid state. The chain is decom-
posed into two parts by a single interface site; solid is to
the left and liquid to the right, for example. The solid-
ification or melting takes place only at this solid-liquid
interface position. He has shown exactly that the steady
motion of the interface is possible in a one-phase region,
but in the two-phase region the velocity of the interface
advancement vanishes. Also the concentrations behind
and ahead of the interface are exactly shown to take the
values of the coexisting solid and liquid phases, respec-
tively, in the two-phase region.

There are a few exactly soluble one-dimensional mod-
els which show an anomalous time dependence of the
mean displacement [4-6]. The diffusion constant is also
known to become anomalous by varying a control param-
eter [6]. For the random directed walk, exact solution of
mean displacement, variance, as well as a scaling form of
the probability distribution are also known [7-9]. In the
crystal growth of a binary chain there is a finite rate of a
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back jump. We want to understand the interface motion
of this model by the Monte Carlo simulation. We find
that the simulation results can be explained completely
just by relating the concentration of B atoms, C, to the
parameter yu of the random directed walk.

II. MODEL

The pure A atoms solidify at the equilibrium melting
temperature T4 with the specific latent heat L4. At a
temperature T near T4, the chemical potential difference
of an A atom in the liquid and the solid states is approx-
imately written as pa = (La/T4)(Ta —T). The corre-
sponding values are described similarly for B atoms. As
for the mixture of A and B atoms, an ideal solution with-
out any interaction is assumed. The coexistence curve in
the parameter space of the temperature 7" and the con-
centration C of B atoms is then given by

1 — e #a/T

Cs(T)

- e_NB/T = e—MA/T’

(1)

(1 _ e*HA/T)e“HB/T

C(T) =

e—#B/T _ g—pa/T
The temperature unit is so chosen that the Boltzmann
constant is unity; kg = 1. At a fixed temperature T
between the melting temperatures of pure A and B sys-
tems, T4 and Tg (< T4), the solution with concentration
C smaller than Cs should be in the solid phase, and that
with C larger than Cp should be in the liquid. The so-
lution with C between Cs and Cp is in the two-phase
region, and the solid and liquid phases are separated by
a stationary interface in equilibrium.

At a high temperature in the liquid one-phase region,
the solution with concentration C is in a purely random
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atomic configuration. On cooling the chain at a fixed
concentration C in a solid one-phase or two-phase re-
gion, the crystal growth takes place. The diffusionless
solidification model in a chain considered by Temkin [1]
is the model that the solidification proceeds via the prop-
agation of a single solid-liquid interface along the frozen
configuration of A and B atoms. The probability P(n,t)
that the chain is solidified up to the nth site but is still
in the liquid state from the (n + 1)th site at a time ¢ is
assumed to satisfy the master equation
-8—%7:’{1 = Z W(n,n)P(n/,t)

n'=ntl

- > W(n',n)P(n,t). (2)

n'=ntl

_

vi= (1= (w_/wy))/(1/wy)
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The transition probability W (n',n) of the interface po-
sition from a site n to n’ depends on the arrangement of
the AB atoms around the interface. When the nth site is
occupied by an X (= A or B) atom which is solid and the
(n+1)thsite by aY (= A or B) atom which is liquid, the
transition probability for the advancement of the inter-
face is W(n + 1,n) = wiy, and that of the retardation
is W(n — 1,n) = w_x. Since the ratio of a particular
atom X to be in the liquid and the solid state is given
by e #x/T thermodynamically and by w_x /w4 x kinet-
ically, the relation w_x/wix = e™#X /T should hold.

The theoretical analysis by Temkin [1,2] reveals that
the mean displacement of the interface position (n(t)) in
the solid one-phase region is linear in time as (n(t)) = v, t
with

:{1—[C%+(1—C)%]}/[a};+c(i;-u)l:)] 3)

and in the liquid one-phase region as (n(t)) = —v_t with

vo= (1= (wy /w_))/{1/w_)

“i-[erca-oma]} [l e (G - o)) o

At Cs (CL), the average (w_/w,) ({wy/w_)) is equal to unity and v, (v-) vanishes. In the two-phase region,
Cs < C < CL, the mean displacement (n(t)) is no longer linear in time, and the steady growth velocity vanishes.
According to Derrida’s general treatment of the one-dimensional hopping model [6], (n(t)) shows a power law behavior
(n(t)) ~ t“* with an exponent v, determined from the relation

() )= ®

He also obtained the expression of the diffusion constant

1. d 2
D=2 lim —{([n(t) — (n()]*)}

- 2 t—oo

e R AR e

for the region {(w-/w4)?) < 1. When C is larger than

1— (w_a/wia)? (7)

2 = pjwep)? — (w-afwra)?

r

D is expected to diverge even in the one-phase region. and then the interface advances forwards with a prob-
ability wyy/(w-x + wyy) or recedes backwards with
a probability w_x/(w_x + wyy). Parameters are cho-
sen as Tq = 0.9, Tg = 0.1, La/T4q = Lg/Ts = 1,

T = 0.5, and thus the equilibrium concentrations are

III. SIMULATION RESULT

In order to understand the fact that the mean dis-

placement and the variance become anomalous at differ-
ent concentrations, we perform Monte Carlo simulations.
When the interface is located betweeen the X solid atom

and Y liquid atom, it waits a time (w_x + wiy)™ ',

Cs = 0.310 and Cp = 0.690. At this special temper-
ature T = 0.5, the phase diagram is symmetric at the
concentration C = 0.5. Parameters for the interface dy-
namics are set as the solidification probabilities being
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wys = wyp = 1, and the melting probabilities being
w_4 = e %% =0.4493 and w_p = %8 = 2.226. A chain
has a length L of 1000-50 000, and each site is occupied
randomly by a B atom with a probability C and by an A
atom with-a probability 1—C. The sequence of AB atoms
is kept fixed during a whole simulation. The solid-liquid
interface is initially set at a site lp with the solid being
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FIG. 1. Time  variation of (a) the mean
displacement (n(t)) and (b) the variance
o(t) = +/{[n(t) — (n(t))]?) for various concentrations of B

atoms in a both logarithmic way. Two straight lines repre-
sent the asymptotic behavior with exponent 1 and 1/2.

in the region ! < [y and the liquid being in the region
l > lp. The random walk of the interface position has
been simulated up to the time 10°. Averages of physical
quantities have been taken over 10° chains with various
AB sequences. The mean displacement (n(t) = I(t) — lo)
at various concentrations of the B species are plotted
in Fig. 1(a). The time dependence is fitted to a single
power law of the time as (n(t)) = at** + b, and the ob-
tained dynamical exponent v, is plotted in Fig. 2. Up to
the equilibrium concentration Cs = 0.31, the exponent
v; remains about unity, and it starts to decrease on in-
creasing C to the symmetric point C = 0.5. By forcing
a linear fit of (n(t)) to the time ¢, the velocity v varies
as is shown in Fig. 3, and agrees quite well with the the-
oretical expectation Eq. (3) in the one-phase region. In
the two-phase region, Cs < C < Cp, an exponent v; = %
is expected by the mean field approximation [3], which
is in clear contradiction to the simulation result, since v;
depends on the concentration and varies between unity
and 0. The variation of v, agrees well with the theoreti-
cal expectation (5), which can be simplified in the present
case as

v = 1.251n(1 ;C> (8)

and is shown by a solid line in Fig. 2. The decrease of
the exponent vy in the Bernasconi-Schneider model [4]
has been confirmed by a similar Monte Carlo study [10].

The time evolution of the variance o(t) =
V{[n(t) — (n(t))]?) is plotted in Fig. 1(b). It is also
fitted to a single power law, o(t) = axt*? + bz, and the
exponent v, is shown in Fig. 2. v, starts from % of the
normal Brownian motion for a pure system, C' = 0, up

to about C2 = 0.168 given by Eq. (7), and increases
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FIG. 2. Exponent 1v; of the mean displacement,

(n(t)) ~ t**, and that v; of the variance, o(t) ~ t*2, at
various concentrations of B atoms. The solid-liquid phase
boundary is at Cs = 0.31, and the anomaly in o is expected
at C2 = 0.168. Solid and dashed lines represent theoretical
expectations, Eq. (13), of v; and vz, respectively.
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FIG. 3. Linear velocity v+ and the reciprocal diffusion con-
stant D~! versus concentration C. Solid and dotted lines rep-
resent the theoretical values of vy [Eq. (3)] and D~ '[Eq.(6)],
respectively.

to 1 near Cs. From Cgs on, v, decreases similarly with
the velocity exponent v;. By fitting 02(t) to the linear
growth law for 0 < C < Cs, the diffusion constant D
is obtained and its reciprocal D~! is plotted in Fig. 3.
The simulation data agree qualitatively with the theoret-
ical expectation (6), or more appropriately in the present
case as

(C; —C) (€28 4 ¢=08) (0)
(Cs —C)[1+ Ce®8 + (1 — C)e—08]2"

D l'=2

Anomalies in the mean displacement and the variance
are reflected in the profile of the probability distribution
P(n,t). Figure 4 depicts P(n,t) for different concentra-
tions at C = 0.10, 0.28, 0.35, 0.43, and 0.5. In the region
below C5 the probability P has a steadily moving round
peak [Fig. 4(a)] and the profile is almost symmetric
about the peak. In the region between Cy and Cg shown
in Fig. 4(b), the peak moves steadily but a significant
portion of the probability remains at the initial position.
This causes the strong broadening and the divergence of
diffusion constant D. In the region Cs < C < 0.40 shown
in Fig. 4(c), the profile of P looks similar to that shown
in Fig. 4(b) with the exception that the main peak now
shifts slower than linearity in time, and in fact the peak
shift has the same time dependence with the width of
P(n,t). Deep in the two-phase region at C > 0.40 as
shown in Fig. 4(d), probability P consists solely of a
cuspy peak staying stationary at the initial position with
an asymmetric long tail. Of course at C = 0.50 the peak
remains at the origin due to the symmetry, as shown in
Fig. 4(e).

Variation of the probability distribution at different
times can be summarized into a scaling form. The prod-
ucts of the probability P and the width o at various
times are plotted as a function of the normalized posi-
tion, (n— (n}))/o, in the one-phase region [Figs. 5(a) and
5(b)], or n/o in the two-phase region [Figs. 5(c)—(e)].
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FIG. 4. Probability distribution P(n,t) of finding the in-
terface at position n at time t x 10™* = 0.25,0.5,1, 2,4 with
concentrations (a) C =0.10, (b) C = 0.28, (¢) C = 0.35, (d)
C =0.43, and (e) C = 0.50.
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These plots indicate that the probability P(n,t) asymp-
totically satisfies the scaling relation

P(n,t) = o(t) " P(én/o(t)), (10)
with the deviation én from the average position (n(t)) =

vt in the one-phase region and from the initial position
(i-e., origin) in the two-phase region.
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IV. CONCLUSIONS AND DISCUSSIONS

The interface motion between the solid and liquid in
a binary chain is studied by Monte Carlo simulations,
and the anomalous time dependence of the mean dis-
placement and the variance is obtained. The transition
concentrations Cs and C, and the velocity exponent v,
agree well with theoretical calculation [6]. The variance
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FIG. 5. Scaling plot of the probability o(t)P(n,t) versus [n — n(t)]/o(t) for (a) and (b), or n/o(t) for (c), (d), and (e), for
various times ¢ x 10™* = 0.25,0.5,1,2,4. Concentrations are (a) C =0.10, (b) C = 0.28, (c) C = 0.35, (d) C =0.43, and (e)

C = 0.50.
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exponent ve shows rather complicated behavior. It re-
1

mains constant to be ; for 0 < C < Cs, increases to
unity for C; < C < Cg, and then decreases to vanish
for Cs < C < 0.5. Similar complex behavior is found for
an exactly soluble model of a directed random walk on a
chain [7-9]. In the model, the backward transition rate
W(n — 1,n) is set zero and the forward transition rate
W(n + 1,n) = W is a random variable with the distri-
bution function (W) in a power law with a cutoff W,

as

- W
W) ~WE I — ). 11
$(w) () (1)
Exponents are obtained exactly to be
V1 =Uy =W for 0<pu<l,
vi=1, 20, =3—pu for l<pu<2, (12)
v, =2v =1 for 2 < p.

If we replace p by 1.251n[(1—C)/C] following the relation
(8), we get the exponents as

vy = vy = 1.25In[(1 - C)/C]
v =1, 2v, =3—-1.25In[(1 — C)/C]

vy =21, =1 for

These results are shown in Fig. 1 and agree fairly
well with the simulation result. Therefore, the anomalous
time dependence of the diffusionless crystal growth of
a binary chain seems to be projected onto that of the
random directed walk.

At C=0.5, the model reduces to the Sinai model [11].
In this model the variance (n(t)?) is shown to evolve very
slowly as (Int)%. This behavior is well observed by plot-

ting /o (t) = (n?(t))}/* versus Int, as is shown in Fig.
6.

c=0.5
15 - B T
14 + N
13 -
12 —
= Mr 7
~
@ 10 .
9t & 4
i
8 - © E
i
7t . .
6 -
5 o anld poa vl L
1000 10000 100000 1 x 108

t

FIG. 6. Semilogarithmic plot of /o(t) versus time t at
C = 0.50. The result agrees with that of the Sinai model.

for 0.5>C >Csg,
for Cs >C >C,, (13)
Cy>C>0.
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